Yunanca μάθημα matema, “bilgi, çalışma, öğrenme”) nicelik, yapı, uzay ve değişim gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.Matematikçiler örüntüleri araştırır ve bunları yeni konjektürler formüle etmekte kullanırlar. Bu konjektürlerin doğruluğunu veya yanlışlığını matematiksel ispat yoluyla çözmeye çalışırlar. Matematiksel yapılar gerçek fenomenleri iyi modelize ettiklerinde matematiksel düşünce doğa hakkında tahmin yürütmemizi ve onun iç yüzünü anlamamızı sağlayabilir. Matematik soyutlama vemantığı kullanarak ve sistemli çalışmayla fiziksel objelerin biçimlerini ve hareketlerini saymayı, hesaplamayı ve ölçmeyi mümkün kılar ve böylece gelişir. Pratik matematik yazılı kayıtlardan beri insan etkinliği olagelmiştir. Matematik problemlerinin çözümü için gerekli araştırma yıllarca hatta yüzyıllarca süren bir çaba gerektirebilir.
İlk titiz kayıtlara Yunan matematiğinde rastlanır. (Özellikle Öklid’in Elementler kitabında.) Giuseppe Peano (1858-1932), David Hilbert (1862-1943) ve diğerlerinin geç 19 yüzyılda belitsel sistemler üzerine kurdukları çalışmalarından beri matematiksel araştırmada doğruyu kurmanın geleneği değişti. (Artık uygun olarak seçilen aksiyom ve tanımlardan titiz bir şekilde tümdengelim yapılmaktadır.) Matematik Rönesans’a kadar görece yavaş gelişti. Sonra matematikteki yenilikler diğer yeni bilimsel keșiflerle etkileșerek matematiksel keșiflerde günümüzde hala devam eden hızlı bir artış sağladı.
Galileo Galilei (1564-1642) “Kainat dediğimiz kitap, yazıldığı dil ve harfler öğrenilmedikçe anlaşılamaz. O, matematik dilinde yazılmış; harfleri üçgen, daire ve diğer geometrik şekillerdir. Bu dil ve harfler olmaksızın kitabın bir tek sözcüğünü anlamaya olanak yoktur. Bunlar olmaksızın yapılan karanlık bir labirentte amaçsızca dolaşmaktır.” Carl Friedrich Gauss (1777-1855) matematiği bilimlerin kraliçesine benzetmiştir. Benjamin Peirce (1809-1880) matematik için bilimlerin sonuçlarının çizilmesi için gereken bilim demiştir. David Hilbert “Biz burada gelişigüzel konuşmayız. Matematik şart koşulan rastgele kuralların olduğu bir oyun gibi değildir. O yalnızca içsel gerekliliğin olduğu kavramsal bir sistemdir, aksi hiçbir şey değil.” Albert Einstein (1879-1955), “Matematik kesin olduğunda gerçeği yansıtmaz, gerçeği yansıttığında kesin değildir.” Fransız matematikçi Claire Voisin, “Matematikte yaratıcı itki, her yerinde kendini ifade etmeyi denemesidir.” der.
Matemetik dünya genelinde doğa bilimleri, mühendislik, bilişim ve finans gibi birçok alanın temel aracıdır. Uygulamalı matematik, matematiksel bilginin diğer alanlara uygulanmasıyla ilgilidir.Bu uygulamalar sayesinde istatistik ve oyun teorisi gibi tamamıyla yeni matematik disiplinleri doğmuştur. Ayrıca matematikçiler soyut matematikle akıllarında herhangi bir kullanım olmadan da yalnızca matematik yapmak için uğraşırlar. Soyut matematikle uygulamalı matematiği ayıran belirgin bir çizgi yoktur. Soyut matematikteki keşifler sıklıkla pratik matematik uygulumalarının başlatıcısı olurlar. Matematik, bilimde olduğu kadar günlük hayatta da bir insanın sık sık karşısına çıkar. Matematik, temeli mantığa dayanan bir sistemdir ve zihni geliştiren bir araç olarak kişiye rasyonel bakış açısı kazandırır. Kişiye özgür ve önyargısız bir düşünce ortamı yaratır. İnsanın sistemli, mantıklı, tutarlı düşünmesini sağlar. Bu yüzden matematik dersi ilköğretimden yükseköğretim programlarına kadar her alanda yer alır. İlköğretimde ortaöğretime hazırlık olarak, ortaöğretimde yükseköğretime hazırlık olarak matematik öğretimi yapılır.